The Earth Information Portal

The Earth Information PortalThe Earth Information PortalThe Earth Information Portal
  • Home
  • News Of Our Planet
  • Get Involved
  • Other Earth Pages
    • Science
    • Nature
    • Books
  • About
    • About David From Earth
    • Music by David From Earth
    • Contact
    • About This Website
  • More
    • Home
    • News Of Our Planet
    • Get Involved
    • Other Earth Pages
      • Science
      • Nature
      • Books
    • About
      • About David From Earth
      • Music by David From Earth
      • Contact
      • About This Website

The Earth Information Portal

The Earth Information PortalThe Earth Information PortalThe Earth Information Portal
  • Home
  • News Of Our Planet
  • Get Involved
  • Other Earth Pages
    • Science
    • Nature
    • Books
  • About
    • About David From Earth
    • Music by David From Earth
    • Contact
    • About This Website

periodic table of elements

From Wikipedia:

The periodic table, also known as the periodic table of elements, is a tabular display of the chemical elements, which are arranged by atomic number, electron configuration, and recurring chemical properties. The structure of the table shows periodic trends. The seven rows of the table, called periods, generally have metals on the left and nonmetals on the right. The columns, called groups, contain elements with similar chemical behaviours. Six groups have accepted names as well as assigned numbers: for example, group 17 elements are the halogens; and group 18 are the noble gases. Also displayed are four simple rectangular areas or blocks associated with the filling of different atomic orbitals.


The elements from atomic numbers 1 (hydrogen) through 118 (oganesson) have all been discovered or synthesized, completing seven full rows of the periodic table.[1][2] The first 94 elements, hydrogen through plutonium, all occur naturally, though some are found only in trace amounts and a few were discovered in nature only after having first been synthesized.[n 1] Elements 95 to 118 have only been synthesized in laboratories, nuclear reactors, or nuclear explosions.[3] The synthesis of elements having higher atomic numbers is currently being pursued: these elements would begin an eighth row, and theoretical work has been done to suggest possible candidates for this extension. Numerous synthetic radioisotopes of naturally occurring elements have also been produced in laboratories.


The organization of the periodic table can be used to derive relationships between the various element properties, and also to predict chemical properties and behaviours of undiscovered or newly synthesized elements. Russian chemist Dmitri Mendeleev published the first recognizable periodic table in 1869, developed mainly to illustrate periodic trends of the then-known elements. He also predicted some properties of unidentified elements that were expected to fill gaps within the table. Most of his forecasts soon proved to be correct, culminating with the discovery of gallium and germanium in 1875 and 1886 respectively, which corroborated his predictions.[4] Mendeleev's idea has been slowly expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behaviour. The modern periodic table now provides a useful framework for analyzing chemical reactions, and continues to be widely used in chemistry, nuclear physics and other sciences. Some discussion remains ongoing regarding the placement and categorisation of specific elements, the future extension and limits of the table, and whether there is an optimal form of the table.

Interesting Stuff

Since 2016, the periodic table has 118 confirmed elements, from element 1 (hydrogen) to 118 (oganesson). Elements 113, 115, 117 and 118, the most recent discoveries, were officially confirmed by the International Union of Pure and Applied Chemistry (IUPAC) in December 2015. Their proposed names, nihonium (Nh), moscovium (Mc), tennessine (Ts) and oganesson (Og) respectively, were made official in November 2016 by IUPAC.


The first 94 elements occur naturally; the remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are primordial and 11 occur only in decay chains of primordial elements. No element heavier than einsteinium (element 99) has ever been observed in macroscopic quantities in its pure form, nor has astatine (element 85); francium (element 87) has been only photographed in the form of light emitted from microscopic quantities (300,000 atoms).

Find out more

Copyright © 2025 The Earth Information Portal - All Rights Reserved.

Powered by

  • Home
  • News Of Our Planet
  • Get Involved
  • Science
  • Nature
  • Books